There are a lot of people interested in inverting Laplace transforms that have branch cuts in the complex plane. Some of these are known; at least one that I have done I could not find anywhere and looks like an original computation as far as I can tell. In any case, let’s start with one that does have a result in the tables. Although one may simply go to the tables, there is very little insight as to how such results are derived. I offer one particular way.

The first in this series of ILT’s is

$$ F(z) = e^{-\sqrt{z}}$$

To evaluate, you can use a contour integration without that substitution as follows by deforming the Bromwich contour about the negative real axis and exploiting a branch cut of $\sqrt{z}$ about that axis. So, consider the integral

$$\oint_C dz \: e^{-\sqrt{z}} e^{z t}$$

where $C$ is a keyhole contour about the negative real axis, as pictured below.

We will define $\text{Arg}{z} \in (-\pi,\pi]$, so the branch is the negative real axis. There are $6$ pieces to this contour, $C_k$, $k \in \{1,2,3,4,5,6\}$, as follows.

$C_1$ is the contour along the line $z \in [c-i R,c+i R]$ for some large value of $R$.

$C_2$ is the contour along a circular arc of radius $R$ from the top of $C_1$ to just above the negative real axis.

$C_3$ is the contour along a line just above the negative real axis between $[-R, -\epsilon]$ for some small $\epsilon$.

$C_4$ is the contour along a circular arc of radius $\epsilon$ about the origin.

$C_5$ is the contour along a line just below the negative real axis between $[-\epsilon,-R]$.

$C_6$ is the contour along the circular arc of radius $R$ from just below the negative real axis to the bottom of $C_1$.

We will show that the integral along $C_2$,$C_4$, and $C_6$ vanish in the limits of $R \rightarrow \infty$ and $\epsilon \rightarrow 0$.

On $C_2$, the real part of the argument of the exponential is

$$R t \cos{\theta} – \sqrt{R} \cos{\frac{\theta}{2}}$$

where $\theta \in [\pi/2,\pi)$. Clearly, $\cos{\theta} < 0$ and $\cos{\frac{\theta}{2}} > 0$, so that the integrand exponentially decays as $R \rightarrow \infty$ and therefore the integral vanishes along $C_2$.

On $C_6$, we have the same thing, but now $\theta \in (-\pi,-\pi/2]$. This means that, due to the evenness of cosine, the integrand exponentially decays again as $R \rightarrow \infty$ and therefore the integral also vanishes along $C_6$.

On $C_4$, the integral vanishes as $\epsilon$ in the limit $\epsilon \rightarrow 0$. Thus, we are left with the following by Cauchy’s integral theorem (i.e., no poles inside $C$):

$$\left [ \int_{C_1} + \int_{C_3} + \int_{C_5}\right] dz \: e^{-\sqrt{z}} e^{z t} = 0$$

On $C_3$, we parametrize by $z=e^{i \pi} x$ and the integral along $C_3$ becomes

$$\int_{C_3} dz \: e^{-\sqrt{z}} e^{z t} = e^{i \pi} \int_{\infty}^0 dx \: e^{-i \sqrt{x}} e^{-x t}$$

On $C_5$, however, we parametrize by $z=e^{-i \pi} x$ and the integral along $C_5$ becomes

$$\int_{C_5} dz \: e^{-\sqrt{z}} e^{z t} = e^{-i \pi} \int_0^{\infty} dx \: e^{i \sqrt{x}} e^{-x t}$$

We may now write

$$-\frac{1}{i 2 \pi} \int_0^{\infty} dx \: e^{- x t} \left ( e^{i \sqrt{x}} – e^{-i \sqrt{x}} \right ) + \frac{1}{i 2 \pi} \int_{c-i \infty}^{c+i \infty} ds \: e^{-\sqrt{s}} e^{s t} = 0$$

Therefore, the ILT of $\hat{f}(s) = e^{-\sqrt{s}}$ is given by

$$\begin{align}\frac{1}{i 2 \pi} \int_{c-i \infty}^{c+i \infty} ds \: e^{-\sqrt{s}} e^{s t} &= \frac{1}{i 2 \pi} \int_0^{\infty} dx \: e^{- x t} \left ( e^{i \sqrt{x}} – e^{-i \sqrt{x}} \right )\\ &= \frac{1}{\pi} \int_{-\infty}^{\infty} du\: u \,e^{-t u^2} \sin{u}\end{align}$$

The last step involved substituting $x=u^2$ and exploiting the evenness of the integrand. This integral may be evaluated as follows:

$$\begin{align}\frac{1}{\pi} \int_{-\infty}^{\infty} du\: u \,e^{-t u^2} \sin{u} &= \frac{1}{\pi} \Im{\left [\int_{-\infty}^{\infty} du\:u\, e^{-t u^2} e^{i u} \right]}\\ &= \frac{1}{\pi} \Im{\left [\int_{-\infty}^{\infty} du\:u\, e^{-t (u-i/(2 t))^2} e^{-1/(4 t)}\right ]}\\ &= \frac{1}{\pi} e^{-1/(4 t)} \Im{\left [\int_{-\infty}^{\infty} dv \: \left ( v + \frac{i}{2 t} \right ) e^{-t v^2} \right]}\\ &= \frac{1}{\pi} e^{-1/(4 t)} \frac{1}{2 t} \sqrt{\frac{\pi}{t}} \end{align}$$

Therefore the result is that

$$\mathcal{L}^{-1}[e^{-\sqrt{z}}](t) = \frac{1}{i 2 \pi} \int_{c-i \infty}^{c+i \infty} dz \: e^{-\sqrt{z}} e^{z t} = \frac{1}{2 \sqrt{\pi}} t^{-3/2} e^{-\frac{1}{4 t}}$$

Mr.Gordon I wanted to thank you for your perfect (blog?) and your significant contribution to stack exchange.it takes great generousity to share knowledge.and it is the most enormous milestone of 21st century to be able to simply post a problem on stack exchange (internet) and people would think and answer that!

just imagine in the era of gauss and euler there was such a thing!we would be centuries further!!

Im a highschool student with interest in math and I follow all your articles here.