The problem posed in M.SE concerns real methods of evaluating $$\int_0^{\infty} dx\frac{\log(x)}{\cosh(x) \sec(x) \tan(x)} $$ The place I started is the nifty result, proven here, that $$\frac{\sin{x}}{\cosh{t} – \cos{x}} = 2 \sum_{k=1}^{\infty} e^{k t} \sin{k x} $$ Of course, the integral actually looks like $$\int_0^{\infty} dx \frac{\cos{x}}{\cosh{x} – \sin{x}} \log{x} $$ so we need to […]

Recent Comments
 Ron on The art of using the Residue Theorem in evaluating definite integrals
 Konstantinos on The art of using the Residue Theorem in evaluating definite integrals
 Ron on The art of using the Residue Theorem in evaluating definite integrals
 Konstantinos on The art of using the Residue Theorem in evaluating definite integrals
 Ron on Inverse Laplace Transform IV

Meta